fbq('track', 'CompleteRegistration', { content_name: 'Registration' })
top of page

2025國際兒童及青少年天文大賽
2025 International Children and Youth Astronomy Competition

【06 月 03 日截止 / Deadline: June 3】

128954ee56c7cc09a69a5d16324e2ae.png

在 2025 年,這場亞洲天文大賽,是一個專為熱愛天文的青少年精心籌備的亞洲區域性角逐平臺。

 

這不僅是一個展現天文知識儲備的絕佳契機,更是一個錘煉邏輯思辨、培養探究精神和激發創新思維的卓越陣地。無論你處於中學對宇宙充滿好奇的階段,還是大學本科深入鑽研天文專業知識的時期,亦或是對天文的癡迷程度深淺如何,這場賽事都將為你搭建一個挑戰自我、呈現天文智慧與本領的精彩舞臺。

 

本次比賽旨在為年輕的天文愛好者賦予一個於亞洲區域舞臺上競技的珍貴機遇。在這裏,你會與來自亞洲各地的傑出選手同場較量,交流學習心得,分享觀測技巧與對天文現象的獨特見解,相互啟迪,攜手共進。我們全力為每一位參賽者營造公平且優質的比賽條件,從觀測設備的精心準備與校準,到理論考試環境的嚴謹佈置,再到天文觀測場地的合理安排與安全保障。

 

同時,邀約專業的評審團隊,他們皆在天文領域造詣深厚,經驗豐富,涵蓋了天文學家、天文教育專家以及資深天文觀測愛好者等。他們以專業的知識和豐富的經驗,保障你的付出與實力能夠收穫充分的認可與肯定。無論你是天文領域的新手,才剛剛被浩瀚宇宙中的神秘天體所吸引,踏入這豐富多彩的天文知識海洋,還是已然擁有深厚底蘊、能夠熟練解讀天文數據、精准分析天文現象背後原理的少年才俊,2025 年亞洲天文大賽都熱忱歡迎你的加入。

 

讓我們一同在這個滿溢智慧與挑戰的舞臺上,憑藉對天文現象的細緻觀察、對天文理論原理的深度剖析,以及對天文知識的創新應用,解開一道道天文謎題,探尋宇宙背後的無盡奧秘,挖掘天體運行變化中的奇妙規律!期待在賽場上目睹你用獨特的見解詮釋天文現象,用出色的發揮展現天文的絢麗與魅力!

Registration Deadline:03-06-2025

Result Announcement:06-06-2025

2025 International Children and Youth Astronomy Competition

選擇一個選項/Choose an option

團體有五名或以上成員,請下載並填寫「團體報名表格」,然後通過WhatsApp回傳給我們以便跟進處理。

If your group has five or more members, please download and complete the "Group Registration Form," then return it to us via WhatsApp for further processing.

報名費用: 免費 /Registration Fee: Free

參賽組別/Competition Categories

  • 小童組(P1-P3)/ Lower Children's Group (P1-P3): 

  • 兒童組(P4-P6)/ Higher Children's Group (P4-P6): 

  • 少年組(S1-S3) / Youth Group (S1-S3):

  • 青年組(S4-S6)/ Young Adult Group (S4-S6): 

比賽規則/Competition Rules

  • 題型:比賽題目分為選擇題和填空題兩種形式。

  • 比賽時間:比賽全程30分鐘,包含10至20道題目。比賽結束時,系統將自動提交答卷,每人僅限作答一次。

  • 題目內容:題目涵蓋學生應掌握的基本知識以及具有挑戰性的進階題目。建議參賽者合理安排時間,優先完成熟悉的題目,未解答的題目可在比賽時間結束前返回作答。

  • 允許工具:參賽者可使用計算器輔助計算。

  • 成績公佈:比賽結束後,為確保公平,將不立即公佈成績或答案。

  • 排名:學校排名和地區排名將根據參賽者填報的准確信息進行計算,請每位參賽者誠實作答。

  • 比賽開始時,需閱讀並同意個人聲明,承諾不得作弊或代考。

  • 比賽時間為30分鐘,系統會提供時間提示。

  • 比賽過程中不得切換屏幕,切換超過3次將視為作弊處理。

  • 比賽成績可能同步至參賽者所填報的學校。

  • 可使用手機或電腦參賽,建議使用電腦以獲得更佳的參賽體驗。

  • Question Types: The competition consists of multiple-choice and fill-in-the-blank questions.

  • Duration: The competition lasts 30 minutes, with 10 to 20 questions. Submissions will be automatically collected at the end of the time. Each participant is allowed only one attempt.

  • Question Content: Questions include fundamental knowledge that students should master as well as advanced challenges. Participants should manage their time effectively, completing familiar questions first and returning to unanswered questions before time expires.

  • Permitted Tools: Calculators are allowed during the competition.

  • Results Announcement: To ensure fairness, scores and answers will not be disclosed immediately after the competition.

  • Ranking: School and regional rankings will be based on the accurate information provided by the participants. Honesty is required from all participants.

  • Participants must read and agree to a personal declaration at the start, committing not to cheat or impersonate others.

  • The competition duration is 30 minutes, with time reminders provided by the system.

  • Switching screens during the competition is prohibited. Switching more than three times will be considered cheating.

  • Competition results may be shared with the school provided in the participant's registration.

  • Participants can use a smartphone or computer, but a computer is recommended for a better experience.

參賽方法/Participation Method:

  • 於比賽日期及指定時間內,完成線上登記參賽。

  • 登記後,系統將在5個工作日內發送確認郵件及聯絡信息,提供參賽系統的登入賬戶與密碼。

  • 在比賽指定時間內,進入比賽網站並點擊比賽入口開始答題。

  • 進入題目區域後開始作答,每位參賽者僅限作答一次。

  • 成績將於公佈日期透過電子郵件及電話通知,並同步至官網及官方社交媒體平台。

  • 若需申請成績或獎項證書,請在獎項申請階段完成登記。

  • Register online during the designated competition date and time.

  • Within three working days, the system will send a confirmation email and contact information, providing the login account and password for the competition system.

  • Access the competition portal on the designated website during the specified time to begin the test.

  • Once in the question section, participants may start answering. Each participant is allowed only one attempt.

  • Final results will be announced on the designated date via email and phone notifications and will also be published on the official website and social media platforms.

  • If a certificate of results or awards is required, please complete the registration during the award application process.

題目範圍/Scope of Topics

本次 2025 天文天才大賽,題目範圍廣泛,全面覆蓋天文領域多個重要板塊,從基礎知識考查到高階的技術分析及難題解讀,旨在充分挖掘參賽者的天文潛能,展現天文知識的深度與廣度,具體內容如下:

 

一、基礎知識

(一)天體與宇宙

天體的分類與特徵:熟練掌握恒星、行星、衛星、彗星、小行星、星雲等各類天體的定義、特徵和區別。瞭解恒星的生命週期,包括從原恒星到主序星、紅巨星、白矮星、中子星或黑洞的演化過程。熟悉太陽系內八大行星的基本參數(如品質、半徑、公轉週期、自轉週期等)、表面特徵(如地形、大氣成分)和衛星系統。能夠準確識別不同類型的星雲(如發射星雲、反射星雲、暗星雲)及其形成機制。

 

宇宙的結構與演化:深入理解宇宙大爆炸理論的基本內容,包括宇宙的起源、早期演化過程(如原初核合成、宇宙微波背景輻射的形成)。瞭解宇宙的尺度結構,從星系(如銀河系的結構、組成)到星系團、超星系團,以及宇宙的大尺度結構分佈特徵。掌握哈勃定律及其在測量宇宙膨脹速率中的應用,理解宇宙年齡的估算方法。

 

(二)天文觀測基礎

天文觀測儀器:熟悉光學望遠鏡(如折射望遠鏡、反射望遠鏡、射電望遠鏡)的基本原理、結構和性能指標(如口徑、焦距、解析度、視場等)。瞭解現代天文觀測設備(如空間望遠鏡、干涉儀)的特點和優勢,以及它們在不同波段(如可見光、紅外、紫外、射電)觀測中的應用。能夠正確使用天文望遠鏡進行簡單的天體觀測,包括目標天體的尋找、定位和圖像記錄。

 

天文坐標系:透徹理解赤道坐標系、地平坐標系等天文坐標系的定義、原理和轉換方法。能夠使用天文坐標系準確描述天體在天空中的位置,計算天體的赤經、赤緯、方位角和高度角等參數。瞭解歲差、章動、極移等現象對天體位置測量的影響及其修正方法。

 

(三)天文數據處理與分析

數據採集與處理:熟練掌握天文數據的採集方法,包括使用天文觀測設備獲取圖像、光譜等數據,以及從天文資料庫中獲取相關數據。能夠運用數據處理軟體(如 IRAF、Miriad、TOPCAT 等)對採集到的數據進行預處理,如圖像的校準、去噪、拼接,光譜數據的波長校準、流量校準等。

 

數據分析與解讀:深入理解常見的天文數據分析方法,如光度測量、光譜分析、天體物理建模等。能夠通過光度測量確定天體的亮度、顏色和星等,分析天體的物理性質(如溫度、半徑、品質)。通過光譜分析識別天體的化學成分、運動速度和物理狀態。能夠運用天體物理模型(如恒星結構模型、星系演化模型)對觀測數據進行擬合和解釋,推斷天體的演化過程和物理機制。

 

二、天文研究方法與思維

(一)邏輯推理

演繹推理:嚴格遵循演繹推理的規則,從天文學的基本定義、定律和理論出發,通過逐步推導得出結論。能夠準確運用三段論等推理形式進行證明,如在解釋行星運動規律時,根據萬有引力定律和牛頓運動定律,有條理地推導出開普勒行星運動定律。

 

歸納推理與類比推理:善於通過對一系列天文觀測數據和現象的觀察、分析,歸納總結出一般性的規律或結論,如通過對多個星系的觀測,歸納出星系的品質 - 光度關係。同時,能夠運用類比推理的方法,根據兩類天體或天文現象在某些方面的相似性,推測它們在其他方面也可能具有相似的性質,如將恒星的核聚變過程類比到星系中心超大品質黑洞的吸積盤能量釋放機制。

 

(二)天文建模

模型構建:面對天文問題,能夠敏銳地分析問題中的物理關係和數據特徵,選擇合適的天文模型進行刻畫,如利用恒星演化模型描述恒星的生命週期,用星系形成模型解釋星系的起源和演化,通過行星大氣模型研究行星的氣候和環境。

 

模型求解與驗證:熟練運用所學的天文學知識和數學方法對構建的模型進行求解,得到問題的理論解。並能夠將理論解與實際觀測數據進行比較和驗證,檢驗模型的合理性與有效性,根據驗證結果對模型進行調整和優化,確保模型能夠準確反映天文現象和物理過程。

 

(三)圖文結合

以圖助文:充分利用天文圖像(如星系圖像、恒星光譜圖、天體軌道圖)的直觀性來輔助理解天文知識和解釋天文現象,如通過星系圖像分析星系的形態結構、旋臂特徵,利用恒星光譜圖確定恒星的溫度、化學成分和運動速度,借助天體軌道圖理解行星的公轉和衛星的環繞運動。將抽象的天文概念轉化為形象的圖像,降低理解難度。

 

以文解圖:運用天文學理論和知識精確地解讀天文圖像的含義和資訊,如對一張星系團的圖像,能夠分析其中星系的分佈特徵、相互作用關係,解釋圖像中不同顏色和亮度所代表的物理意義。通過文字描述和分析,使天文圖像的資訊更加清晰和準確,實現圖文資訊的相互補充和深化。

 

三、高階知識與應用

(一)恒星與行星科學

恒星內部結構與演化:熟練掌握恒星內部的物理過程,包括核聚變反應(如氫燃燒、氦燃燒、碳燃燒等)、能量傳輸機制(如輻射傳輸、對流傳輸)和結構方程(如流體靜力學平衡方程、能量守恆方程)。能夠運用這些知識分析恒星在不同演化階段的特徵和變化,如主序星的穩定性、紅巨星的膨脹機制、超新星爆發的條件和過程。

 

行星形成與演化:全面瞭解行星形成的理論模型,如核心吸積理論、盤不穩定理論,掌握行星形成過程中的關鍵步驟和物理機制。熟悉行星的內部結構(如地球的地核、地幔、地殼)、大氣成分和演化歷史,能夠分析行星的宜居性條件,如適宜的溫度、液態水的存在、大氣的保護作用等。

 

(二)星系與宇宙學

星系結構與演化:深入學習星系的分類(如橢圓星系、旋渦星系、不規則星系)、結構(如星系盤、星系核、星系暈)和演化過程。瞭解星系的形成和演化與宇宙大尺度結構的關係,以及星系之間的相互作用(如星系碰撞、合併)對星系演化的影響。能夠運用星系動力學理論分析星系的運動和結構穩定性,解釋星系中恒星和氣體的分佈特徵。

 

宇宙學模型與觀測:掌握現代宇宙學的主要模型,如 ΛCDM 模型(冷暗物質宇宙學模型),理解暗物質、暗能量在宇宙演化中的作用和意義。瞭解宇宙微波背景輻射、大尺度結構、超新星等觀測數據對宇宙學模型的限制和驗證。能夠運用宇宙學模型解釋宇宙的膨脹、結構形成和演化等問題,預測宇宙的未來發展趨勢。

 

(三)天文在實際中的應用

空間探索與航太技術:運用天文學知識解決空間探索中的問題,如航天器的軌道設計(如霍曼轉移軌道、拉格朗日點的應用)、姿態控制、深空探測任務的規劃(如火星探測、小行星採樣返回任務)。瞭解航太技術在天文觀測中的應用,如空間望遠鏡的發射、運行和維護,以及航太技術對天文學研究的推動作用。

 

天文與其他領域的交叉應用:探索天文與地球科學、物理學、化學、生物學等其他學科的聯繫,如通過研究太陽系內天體的地質特徵和化學成分,瞭解行星的形成和演化過程,以及地球的早期環境和生命起源。利用天文學方法監測地球的氣候變化、空間天氣等現象,為地球科學研究提供新的視角和數據支持。在醫學、通信、導航等領域,天文學的原理和技術也有廣泛的應用,如利用射電天文學技術進行射電通信和導航定位。

 

四、挑戰題與創新思維

(一)開放性問題

問題探索:設置具有開放性的天文問題,要求參賽者從不同角度進行思考與探索,提出多種可能的解決方案或結論。例如,給定一個天文觀測到的異常現象,探索其中可能存在的新的物理機制、未知天體或未被發現的天文規律,鼓勵參賽者發揮創新思維,不拘泥於傳統的天文理論和解釋,嘗試新的方法和途徑。

 

方案設計:提出實際應用場景下的開放性任務,如設計一個未來的天文觀測專案(如新一代空間望遠鏡的科學目標和觀測策略、太陽系外行星的探測計畫)、規劃一個天文科普活動(如天文展覽的內容和形式、天文科普講座的主題和受眾),參賽者需要運用天文知識和綜合素養,構建合理的方案,制定詳細的實施計畫,並對方案的可行性、科學價值、社會影響等方面進行分析與評估。

 

(二)跨學科問題

天文與物理結合:設置涉及天文與物理知識交叉的問題,如利用廣義相對論解釋引力透鏡現象、黑洞的形成和性質,通過量子力學分析恒星內部的微觀物理過程、星際介質中的分子結構和化學反應。運用統計物理和熱力學理論研究星系團的熱平衡狀態、恒星系統的動力學演化,實現天文與物理學科的相互滲透與融合。

 

天文與其他學科融合:探索天文與電腦科學、材料科學、工程學等其他學科的聯繫,設計跨學科問題,如在電腦科學中利用天文數據挖掘和機器學習技術發現新的天體、預測天文現象,在材料科學中研發新型的天文觀測設備材料(如高性能的光學鏡片、探測器材料),在工程學中設計和建造大型的天文觀測設施(如射電望遠鏡陣列、空間天文臺)。培養參賽者跨學科運用知識的能力和綜合素養,促進天文學與其他學科的交叉創新發展。

 

參賽者需扎實掌握天文基礎知識,熟練運用各類天文研究方法與思維,具備將天文知識應用於實際問題的能力,並勇於挑戰創新,突破思維定式。大賽通過設置具有挑戰性的題目,激發學生的創新思維,鼓勵學生不斷探索天文學新領域,力求在有限的競賽資源下,全面、高效地檢驗學生的天文素養和綜合能力,避免考查內容的繁瑣與重複,做到精准、有效地考核。
 

The scope of questions in this 2025 Astronomy Genius Competition is extensive, comprehensively covering multiple important areas of the astronomy field. It ranges from the examination of basic knowledge to advanced technical analysis and the interpretation of difficult problems. The aim is to fully tap the astronomical potential of the participants and showcase the depth and breadth of astronomical knowledge. The specific content is as follows:

 

I. Basic Knowledge

(1) Celestial Bodies and the Universe

Classification and Characteristics of Celestial Bodies: Master proficiently the definitions, characteristics, and differences of various celestial bodies such as stars, planets, satellites, comets, asteroids, and nebulae. Understand the life cycle of stars, including the evolution process from protostars to main-sequence stars, red giants, white dwarfs, neutron stars, or black holes. Be familiar with the basic parameters (such as mass, radius, orbital period, rotation period, etc.), surface features (such as terrain, atmospheric composition), and satellite systems of the eight planets in the solar system. Be able to accurately identify different types of nebulae (such as emission nebulae, reflection nebulae, dark nebulae) and their formation mechanisms.

 

Structure and Evolution of the Universe: Have an in-depth understanding of the basic content of the Big Bang theory, including the origin of the universe and the early evolution process (such as primordial nucleosynthesis, the formation of cosmic microwave background radiation). Be aware of the scale structure of the universe, from galaxies (such as the structure and composition of the Milky Way) to galaxy clusters, superclusters, and the distribution characteristics of the large-scale structure of the universe. Master Hubble's Law and its application in measuring the expansion rate of the universe, and understand the methods for estimating the age of the universe.

 

(2) Basics of Astronomical Observation

Astronomical Observation Instruments: Be familiar with the basic principles, structures, and performance indicators (such as aperture, focal length, resolution, field of view, etc.) of optical telescopes (such as refracting telescopes, reflecting telescopes, radio telescopes). Understand the characteristics and advantages of modern astronomical observation equipment (such as space telescopes, interferometers), as well as their applications in observations at different wavelengths (such as visible light, infrared, ultraviolet, radio). Be able to correctly use an astronomical telescope for simple celestial body observations, including the search, positioning, and image recording of target celestial bodies.

 

Astronomical Coordinate Systems: Have a thorough understanding of the definitions, principles, and conversion methods of astronomical coordinate systems such as the equatorial coordinate system and the horizontal coordinate system. Be able to accurately describe the positions of celestial bodies in the sky using astronomical coordinate systems, and calculate parameters such as the right ascension, declination, azimuth, and altitude of celestial bodies. Understand the impacts of phenomena such as precession, nutation, and polar motion on the measurement of celestial body positions and their correction methods.

 

(3) Astronomical Data Processing and Analysis

Data Collection and Processing: Master proficiently the methods of collecting astronomical data, including obtaining data such as images and spectra using astronomical observation equipment, as well as obtaining relevant data from astronomical databases. Be able to use data processing software (such as IRAF, Miriad, TOPCAT, etc.) to preprocess the collected data, such as image calibration, denoising, and stitching, and wavelength calibration and flux calibration of spectral data.

 

Data Analysis and Interpretation: Have an in-depth understanding of common astronomical data analysis methods, such as photometry, spectral analysis, and astrophysical modeling. Be able to determine the brightness, color, and magnitude of celestial bodies through photometry, and analyze the physical properties (such as temperature, radius, mass) of celestial bodies. Identify the chemical composition, motion speed, and physical state of celestial bodies through spectral analysis. Be able to use astrophysical models (such as stellar structure models, galaxy evolution models) to fit and interpret the observed data, and infer the evolution process and physical mechanisms of celestial bodies.

 

II. Astronomical Research Methods and Thinking

(1) Logical Reasoning

Deductive Reasoning: Strictly follow the rules of deductive reasoning, starting from the basic definitions, laws, and theories of astronomy, and draw conclusions through step-by-step derivation. Be able to accurately use reasoning forms such as syllogisms for proof. For example, when explaining the laws of planetary motion, based on the law of universal gravitation and Newton's laws of motion, systematically derive Kepler's laws of planetary motion.

 

Inductive Reasoning and Analogical Reasoning: Be good at observing and analyzing a series of astronomical observation data and phenomena, and summarize general laws or conclusions. For example, through the observation of multiple galaxies, summarize the mass-luminosity relationship of galaxies. At the same time, be able to use the method of analogical reasoning. According to the similarities of two types of celestial bodies or astronomical phenomena in certain aspects, infer that they may also have similar properties in other aspects. For example, analogize the nuclear fusion process of stars to the energy release mechanism of the accretion disk of a supermassive black hole at the center of a galaxy.

 

(2) Astronomical Modeling

Model Construction: When facing astronomical problems, be able to keenly analyze the physical relationships and data characteristics in the problems, and select appropriate astronomical models to depict them. For example, use a stellar evolution model to describe the life cycle of stars, use a galaxy formation model to explain the origin and evolution of galaxies, and study the climate and environment of planets through a planetary atmosphere model.

 

Model Solution and Verification: Proficiently use the learned astronomical knowledge and mathematical methods to solve the constructed models and obtain theoretical solutions to the problems. Be able to compare and verify the theoretical solutions with the actual observed data, test the rationality and effectiveness of the models, and adjust and optimize the models according to the verification results to ensure that the models can accurately reflect astronomical phenomena and physical processes.

 

(3) Combination of Graphics and Texts

Using Graphics to Assist Texts: Make full use of the intuitiveness of astronomical images (such as galaxy images, stellar spectra, celestial body orbit diagrams) to assist in understanding astronomical knowledge and explaining astronomical phenomena. For example, analyze the morphological structure and spiral arm features of galaxies through galaxy images, determine the temperature, chemical composition, and motion speed of stars using stellar spectra, and understand the revolution of planets and the orbiting motion of satellites with the help of celestial body orbit diagrams. Transform abstract astronomical concepts into vivid images to reduce the difficulty of understanding.

 

Using Texts to Interpret Graphics: Use astronomical theories and knowledge to accurately interpret the meanings and information of astronomical images. For example, for an image of a galaxy cluster, be able to analyze the distribution characteristics and interaction relationships of the galaxies in it, and explain the physical meanings represented by different colors and brightness in the image. Through textual description and analysis, make the information of astronomical images clearer and more accurate, and achieve the mutual supplementation and deepening of graphic and textual information.

 

III. Advanced Knowledge and Applications

(1) Stellar and Planetary Sciences

Internal Structure and Evolution of Stars: Master proficiently the physical processes inside stars, including nuclear fusion reactions (such as hydrogen burning, helium burning, carbon burning, etc.), energy transfer mechanisms (such as radiative transfer, convective transfer), and structure equations (such as the hydrostatic equilibrium equation, the energy conservation equation). Be able to use this knowledge to analyze the characteristics and changes of stars at different evolutionary stages, such as the stability of main-sequence stars, the expansion mechanism of red giants, and the conditions and processes of supernova explosions.

 

Formation and Evolution of Planets: Have a comprehensive understanding of the theoretical models of planetary formation, such as the core accretion theory and the disk instability theory, and master the key steps and physical mechanisms in the process of planetary formation. Be familiar with the internal structure (such as the core, mantle, and crust of the Earth), atmospheric composition, and evolutionary history of planets, and be able to analyze the habitability conditions of planets, such as suitable temperature, the presence of liquid water, and the protective effect of the atmosphere.

 

(2) Galaxies and Cosmology

Structure and Evolution of Galaxies: Study in-depth the classification (such as elliptical galaxies, spiral galaxies, irregular galaxies), structure (such as the galactic disk, galactic nucleus, galactic halo), and evolution process of galaxies. Understand the relationship between the formation and evolution of galaxies and the large-scale structure of the universe, as well as the impact of the interactions between galaxies (such as galaxy collisions and mergers) on the evolution of galaxies. Be able to use the theory of galactic dynamics to analyze the motion and structural stability of galaxies, and explain the distribution characteristics of stars and gas in galaxies.

 

Cosmological Models and Observations: Master the main models of modern cosmology, such as the ΛCDM model (cold dark matter cosmology model), and understand the roles and meanings of dark matter and dark energy in the evolution of the universe. Be aware of the constraints and verifications of observational data such as cosmic microwave background radiation, large-scale structure, and supernovae on cosmological models. Be able to use cosmological models to explain issues such as the expansion, structure formation, and evolution of the universe, and predict the future development trends of the universe.

 

(3) Practical Applications of Astronomy

Space Exploration and Aerospace Technology: Use astronomical knowledge to solve problems in space exploration, such as the orbital design of spacecraft (such as the application of Hohmann transfer orbits and Lagrangian points), attitude control, and the planning of deep space exploration missions (such as Mars exploration and asteroid sample return missions). Understand the applications of aerospace technology in astronomical observations, such as the launch, operation, and maintenance of space telescopes, as well as the promoting role of aerospace technology in astronomical research.

 

Interdisciplinary Applications of Astronomy: Explore the connections between astronomy and other disciplines such as Earth science, physics, chemistry, and biology. For example, by studying the geological features and chemical compositions of celestial bodies in the solar system, understand the formation and evolution process of planets, as well as the early environment of the Earth and the origin of life. Use astronomical methods to monitor phenomena such as climate change and space weather on the Earth, providing new perspectives and data support for Earth science research. In fields such as medicine, communication, and navigation, the principles and technologies of astronomy also have wide applications, such as using radio astronomy technology for radio communication and navigation positioning.

 

IV. Challenge Questions and Innovative Thinking

(1) Open-ended Questions

Problem Exploration: Set open-ended astronomical questions that require participants to think and explore from different angles and propose multiple possible solutions or conclusions. For example, given an abnormal astronomical observation phenomenon, explore the possible new physical mechanisms, unknown celestial bodies, or undiscovered astronomical laws behind it. Encourage participants to give full play to their innovative thinking, not be restricted by traditional astronomical theories and interpretations, and try new methods and approaches.

 

Scheme Design: Put forward open-ended tasks in practical application scenarios, such as designing a future astronomical observation project (such as the scientific goals and observation strategies of a new generation of space telescopes, the detection plan for exoplanets), or planning an astronomical popular science activity (such as the content and form of an astronomical exhibition, the theme and audience of an astronomical popular science lecture). Participants need to use astronomical knowledge and comprehensive literacy, construct a reasonable plan, formulate a detailed implementation plan, and analyze and evaluate the feasibility, scientific value, social impact, etc. of the plan.

 

(2) Interdisciplinary Questions

Integration of Astronomy and Physics: Set questions involving the intersection of astronomical and physical knowledge, such as using the general theory of relativity to explain the gravitational lensing phenomenon, the formation and properties of black holes, and analyzing the microscopic physical processes inside stars and the molecular structures and chemical reactions in the interstellar medium through quantum mechanics. Use the theories of statistical physics and thermodynamics to study the thermal equilibrium state of galaxy clusters and the dynamical evolution of stellar systems, achieving the mutual penetration and integration of astronomy and physics disciplines.

 

Integration of Astronomy with Other Disciplines: Explore the connections between astronomy and other disciplines such as computer science, materials science, and engineering, and design interdisciplinary questions. For example, in computer science, use astronomical data mining and machine learning techniques to discover new celestial bodies and predict astronomical phenomena. In materials science, develop new materials for astronomical observation equipment (such as high-performance optical lenses and detector materials). In engineering, design and construct large-scale astronomical observation facilities (such as radio telescope arrays and space observatories). Cultivate participants' ability to apply knowledge across disciplines and their comprehensive literacy, and promote the interdisciplinary and innovative development of astronomy and other disciplines.

 

Participants need to have a solid grasp of basic astronomical knowledge, be proficient in using various astronomical research methods and thinking, possess the ability to apply astronomical knowledge to practical problems, and have the courage to challenge and innovate, breaking through the limitations of traditional thinking. Through setting challenging questions, the competition aims to stimulate students' innovative thinking, encourage them to continuously explore new fields of astronomy, and strive to comprehensively and efficiently test students' astronomical literacy and comprehensive abilities within the limited competition resources. It avoids the complexity and repetition of the examination content, and achieves accurate and effective assessment.

獎項設置/Award Categories

  • 個人獎項: 特金獎 (組別前12%之參賽者)、金獎 (組別前12%-25%之參賽者)  、銀獎(組別前 26%-45%之參賽者)、銅獎 (組別前46%-60%之參賽者)、優異獎 (組別前61%-100%之參賽者)。

  • 團體獎項: 包括「優秀團體大獎」和「傑出導師大獎」。

  • 得獎者可申請訂製印有參賽者中文或英文姓名的獎項。

  • 電子獎狀 $230 港元

  • 電子獎狀+實體獎狀 $250 港元 

  • 電子獎狀 + 實體獎狀 + 獎牌 $280港元

  • 電子獎狀 + 實體獎狀 + 獎牌+ 獎杯 $358港元

  • 截止申請日期為評審結果公布後二個星期

  • *所有獎項會在獎項截止申請日期後八個星期內郵遞寄出。

  • 獎項及證書透過順豐到付寄送。

  • 獎項一經簽收,如有損壞或遺失,不補發。

  • 若因資料錯誤或聯絡困難導致無法投遞,主辦方不負責。

 

Individual Awards:

  • Special Gold Award (Top 12% of participants in the group)

  • Gold Award (Top 12%-25% of participants in the group)

  • Silver Award (Top 26%-45% of participants in the group)

  • Bronze Award (Top 46%-60% of participants in the group)

  • Excellence Award (Top 61%-100% of participants in the group)

Group Awards:

  • Outstanding Group Award

  • Outstanding Mentor Award

Award winners can request customized awards featuring the participant's name in Chinese or English.

Award Options:

  • Electronic Certificate: HKD 230

  • Electronic Certificate + Physical Certificate: HKD 250

  • Electronic Certificate + Physical Certificate + Medal: HKD 280

  • Electronic Certificate + Physical Certificate + Medal + Trophy: HKD 358

The deadline for award applications is two weeks after the announcement of the results.

All awards will be mailed within eight weeks after the application deadline.

Awards and certificates will be sent via SF Express, cash on delivery.

Once the awards are signed for, no replacements will be issued in case of damage or loss.

The organizers are not responsible for failed deliveries due to incorrect information or communication difficulties.

注意事項/Important Notes:

  • 請使用Google Chrome登入考試系統。

  • 主辦方擁有使用參賽作品的權利,並可將其分享給更廣泛的觀眾。

  • 不適當或無關的作品將被拒絕,以保持比賽的純粹性。

  • 影片不得含有任何不當內容,應保持積極向上的音樂精神。

  • 參賽者須同意並遵守比賽規則,確保比賽的公平公正。

  • 違規行為將導致參賽資格的取消,請遵守所有規定。

  • 評審的決定為最終決定,參賽者應尊重專業評審。

  • 主辦方擁有最終決策權,負責確保比賽順利進行。

  • 主辦方有權根據需要修改條款,以保護比賽的公平性。

  • 所有獎項不可轉讓,專屬於那些付出努力的參賽者。

  • 提交作品即表示同意遵守比賽規則,並展示你的音樂夢想。

  • 主辦方擁有最終的爭議解決權,以確保比賽的公平競爭。

  • Please log into the exam system using Google Chrome.

  • Only one entry per participant is allowed. A second submission will not be evaluated.

  • The organizers have the right to use the submitted video to share your outstanding performance with a wider audience.

  • Inappropriate or irrelevant entries will be rejected to maintain the integrity of the competition.

  • Videos must not contain inappropriate content and should uphold a positive and uplifting spirit of music.

  • Participants must agree to and follow the competition rules to ensure fairness and impartiality.

  • Violations of the rules may result in disqualification. Please adhere to all guidelines.

  • The judges' decisions are final. Participants should respect the professional evaluation process.

  • The organizers hold the final authority to ensure the smooth conduct of the competition.

  • The organizers have the right to modify the terms and conditions to protect the fairness of the competition.

  • Awards are non-transferable and are exclusively for the deserving participant.

  • By submitting your entry, you agree to abide by the competition rules and showcase your musical dreams.

  • The organizers have the final authority in resolving disputes to ensure fair competition.

  • Facebook

亞太區青少年文化及學術協會

  • Whatsapp

+852 9014 0839

© Asia-Pacific Youth Cultural and Academic Association Limited 亞太區青少年文化及學術協會有限公司 版權所有。

bottom of page